Part Number Hot Search : 
L12PFI M37212 300195Z BF1211R B8279 BYG23T MBRB2 E3SGS3B4
Product Description
Full Text Search
 

To Download FDS888007 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FDS8880 N-Channel PowerTrench(R) MOSFET
April 2007
FDS8880 N-Channel PowerTrench(R) MOSFET
30V, 11.6A, 10m Features
rDS(on) = 10m, VGS = 10V, ID = 11.6A rDS(on) = 12m, VGS = 4.5V, ID = 10.7A High performance trench technology for extremely low rDS(on) Low gate charge High power and current handling capability RoHS Compliant
tm
General Description
This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low rDS(on) and fast switching speed.
Applications
DC/DC converters
Branding Dash
5
5
4 3 2 1
6 7
1 2 3 4
8
SO-8
(c)2007 Fairchild Semiconductor Corporation FDS8880 Rev. B
1
www.fairchildsemi.com
FDS8880 N-Channel PowerTrench(R) MOSFET
MOSFET Maximum Ratings TA = 25C unless otherwise noted
Symbol VDSS VGS ID EAS PD TJ, TSTG Parameter Drain to Source Voltage Gate to Source Voltage Drain Current Continuous (TA = 25oC, VGS = 10V, RJA = 50oC/W) Continuous (TA = 25 C, VGS = 4.5V, RJA = 50 C/W) Pulsed Single Pulse Avalanche Energy (Note 1) Power dissipation Derate above 25oC Operating and Storage Temperature
o o
Ratings 30 20 11.6 10.7 83 82 2.5 20 -55 to 150
Units V V A A A mJ W mW/oC
o
C
Thermal Characteristics
RJC RJA RJA Thermal Resistance, Junction to Case (Note 2) Thermal Resistance, Junction to Ambient (Note 2a) Thermal Resistance, Junction to Ambient (Note 2b) 25 50 125
oC/W oC/W o
C/W
Package Marking and Ordering Information
Device Marking FDS8880 Device FDS8880 Package SO-8 Reel Size 330mm Tape Width 12mm Quantity 2500 units
Electrical Characteristics TJ = 25C unless otherwise noted
Symbol Parameter Test Conditions Min Typ Max Units
Off Characteristics
BVDSS IDSS IGSS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current ID = 250A, VGS = 0V VDS = 24V VGS = 0V VGS = 20V TJ = 150oC 30 1 250 100 V A nA
On Characteristics
VGS(TH) rDS(on) Gate to Source Threshold Voltage VGS = VDS, ID = 250A ID = 11.6A, VGS = 10V Drain to Source On Resistance ID = 10.7A, VGS = 4.5V ID = 11.6A, VGS = 10V, TJ = 150oC 1.2 7.9 9.6 12.5 2.5 10.0 12.0 16.3 m V
Dynamic Characteristics
CISS COSS CRSS RG Qg(TOT) Qg(5) Qg(TH) Qgs Qgs2 Qgd Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Total Gate Charge at 10V Total Gate Charge at 5V Threshold Gate Charge Gate to Source Gate Charge Gate Charge Threshold to Plateau Gate to Drain "Miller" Charge VDS = 15V, VGS = 0V, f = 1MHz VGS = 0.5V, f = 1MHz VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 15V ID = 11.6A Ig = 1.0mA 0.6 1235 260 150 2.5 23 12 1.3 3.3 2.0 4.2 4.3 30 16 1.6 pF pF pF nC nC nC nC nC nC
(c)2007 Fairchild Semiconductor Corporation FDS8880 Rev. B
2
www.fairchildsemi.com
FDS8880 N-Channel PowerTrench(R) MOSFET
Switching Characteristics (VGS = 10V)
tON td(ON) tr td(OFF) tf tOFF Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDD = 15V, ID = 11.6A VGS = 10V, RGS = 11 7 27 38 15 51 80 ns ns ns ns ns ns
Drain-Source Diode Characteristics
VSD trr QRR Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ISD = 11.6A ISD = 2.1A ISD = 11.6A, dISD/dt = 100A/s ISD = 11.6A, dISD/dt = 100A/s 1.25 1.0 30 20 V V ns nC
Notes: 1: Starting TJ = 25C, L = 1mH, IAS = 12.8A, VDD = 30V, VGS = 10V. 2: RJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RJC is guaranteed by design while RJA is determined by the user's board design. a) 50C/W when mounted on a 1in2 pad of 2 oz copper. b) 125C/W when mounted on a minimum pad.
(c)2007 Fairchild Semiconductor Corporation FDS8880 Rev. B
3
www.fairchildsemi.com
FDS8880 N-Channel PowerTrench(R) MOSFET
Typical Characteristics TJ = 25C unless otherwise noted
1.2 1.0 ID, DRAIN CURRENT (A) 0.8 12 10 VGS = 10V 8 6 4 2 RJA=50oC/W 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) VGS = 4.5V
POWER DISSIPATION MULTIPLIER
0.6 0.4
0.2
Figure 1. Normalized Power Dissipation vs Ambient Temperature
2 1
NORMALIZED THERMAL IMPEDANCE, ZJA
Figure 2. Maximum Continuous Drain Current vs Ambient Temperature
DUTY CYCLE-DESCENDING ORDER
0.1
D = 0.5 0.2 0.1 0.05 0.02 0.01
PDM
0.01
t1
SINGLE PULSE RJA = 125 C/W
o
t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJA x RJA + TA
0.001 0.0005 -4 10
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
t, RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
2000 1000
P(PK), PEAK TRANSIENT POWER (W)
VGS = 10V
SINGLE PULSE RJA = 125 C/W
o
100
TA = 25 C
o
10
1 0.5 -4 10
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
t, PULSE WIDTH (s)
Figure 4. Single Pulse Maximum Power Dissipation
(c)2007 Fairchild Semiconductor Corporation FDS8880 Rev. B
4
www.fairchildsemi.com
FDS8880 N-Channel PowerTrench(R) MOSFET
Typical Characteristics TJ = 25C unless otherwise noted
100 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 50 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V TJ = 25oC 30
IAS, AVALANCHE CURRENT (A)
10
STARTING TJ = 25oC
ID , DRAIN CURRENT (A)
40
20 TJ = 150oC 10 TJ = -55oC
STARTING TJ = 150oC
1 0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms) 100
0 1.5
2.0
2.5
3.0
3.5
VGS , GATE TO SOURCE VOLTAGE (V)
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 5. Unclamped Inductive Switching Capability
Figure 6. Transfer Characteristics
50 VGS = 10V 40 ID, DRAIN CURRENT (A) VGS = 5V VGS = 3V 30 VGS = 4V rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mW)
50 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 40 ID = 11.6A 30
20
20
10
TA = 25oC PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 0 0.2 0.4 0.6 0.8
10 ID = 1A 0 2 4 6 8 10 VGS, GATE TO SOURCE VOLTAGE (V)
0 VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Saturation Characteristics
Figure 8. Drain to Source On Resistance vs Gate Voltage and Drain Current
1.2
1.6 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 1.4 NORMALIZED GATE THRESHOLD VOLTAGE
VGS = VDS, ID = 250A
1.0
1.2
1.0
0.8
0.8 VGS = 10V, ID = 11.6A 0.6 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 0.6 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
Figure 9. Normalized Drain to Source On Resistance vs Junction Temperature
(c)2007 Fairchild Semiconductor Corporation FDS8880 Rev. B 5
Figure 10. Normalized Gate Threshold Voltage vs Junction Temperature
www.fairchildsemi.com
FDS8880 N-Channel PowerTrench(R) MOSFET
Typical Characteristics TJ = 25C unless otherwise noted
1.10 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250A 1.05 1000 C, CAPACITANCE (pF) COSS CDS + CGD 2000 CISS = CGS + CGD
1.00
CRSS = CGD
0.95
0.90 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC)
VGS = 0V, f = 1MHz 100 0.1 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 30
Figure 11. Normalized Drain to Source Breakdown Voltage vs Junction Temperature
10 VGS , GATE TO SOURCE VOLTAGE (V)
Figure 12. Capacitance vs Drain to Source Voltage
100
VDD = 15V
100us
ID, DRAIN CURRENT (A)
8
10
1ms
6
1
4
THIS AREA IS LIMITED BY rDS(on)
10ms 100ms 1s 10s DC
0.1
SINGLE PULSE TJ = MAX RATED RJA = 125 C/W
o
2
WAVEFORMS IN DESCENDING ORDER: ID = 11.6A ID = 1A 0 5 10 15 20 25
0 Qg, GATE CHARGE (nC)
0.01 0.01
TA = 25oC
0.1
1
10
100
VDS, DRAIN to SOURCE VOLTAGE (V)
Figure 13. Gate Charge Waveforms for Constant Gate Currents
Figure 14. Forward Bias Safe Operating Area
(c)2007 Fairchild Semiconductor Corporation FDS8880 Rev. B
6
www.fairchildsemi.com
FDS8880 N-Channel PowerTrench(R) MOSFET
Test Circuits and Waveforms
VDS tP L IAS VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG
+
BVDSS VDS VDD
VDD -
0V
IAS 0.01
0 tAV
Figure 15. Unclamped Energy Test Circuit
Figure 16. Unclamped Energy Waveforms
VDS
VDD L
Qg(TOT) VDS Qg(5) VGS VGS = 10V
VGS
+
DUT Ig(REF)
VDD
Qgs2
VGS = 5V
VGS = 1V 0 Qg(TH) Qgs Ig(REF) 0 Qgd
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VDS
tON td(ON) RL VDS 90% tr
tOFF td(OFF) tf 90%
VGS
+
VDD DUT 0
10%
10%
RGS VGS VGS 0 10% 50% PULSE WIDTH
90% 50%
Figure 19. Switching Time Test Circuit
Figure 20. Switching Time Waveforms
(c)2007 Fairchild Semiconductor Corporation FDS8880 Rev. B
7
www.fairchildsemi.com
FDS8880 N-Channel PowerTrench(R) MOSFET
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application's ambient temperature, TA (oC), and thermal resistance RJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.
( T JM - T A ) P = -----------------------------DM RJA
thermal impedance curve. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads. R JA = 64 + -------------------------------
26 0.23 + Area
(EQ. 2)
(EQ. 1)
In using surface mount devices such as the SO8 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the RJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient
150 120 90 60 30 0 10-1 100 COPPER BOARD AREA - DESCENDING ORDER 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.00 in2
The transient thermal impedance (ZJA) is also effected by varied top copper board area. Figure 22 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1.
200 RJA = 64 + 26/(0.23+Area)
RJA (oC/W)
150
100
50 0.001 0.01 0.1 1 AREA, TOP COPPER AREA (in2) 10
Figure 21. Thermal Resistance vs Mounting Pad Area
ZJA, THERMAL IMPEDANCE (oC/W)
101 t, RECTANGULAR PULSE DURATION (s)
102
103
Figure 22. Thermal Impedance vs Mounting Pad Area
(c)2007 Fairchild Semiconductor Corporation FDS8880 Rev. B
8
www.fairchildsemi.com
FDS8880 N-Channel PowerTrench(R) MOSFET
PSPICE Electrical Model
.SUBCKT FDS8880 2 1 3 ; Ca 12 8 9.3e-10 Cb 15 14 9.3e-10 Cin 6 8 1.15e-9 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD Ebreak 11 7 17 18 33.5 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 It 8 17 1 Lgate 1 9 3.6e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 1.2e-10 RLgate 1 9 36 RLdrain 2 5 10 RLsource 3 7 1.2 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 2.9e-3 Rgate 9 20 2.5 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 5.4e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*170),5))} .MODEL DbodyMOD D (IS=2.6E-12 IKF=10 N=1.01 RS=5.6e-3 TRS1=8e-4 TRS2=2e-7 + CJO=5e-10 M=0.55 TT=1e-11 XTI=2) .MODEL DbreakMOD D (RS=0.2 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=4.27e-10 IS=1e-30 N=10 M=0.38) .MODEL MmedMOD NMOS (VTO=1.8 KP=5 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.5) .MODEL MstroMOD NMOS (VTO=2.21 KP=150 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MweakMOD NMOS (VTO=1.53 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=25 RS=0.1) .MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-8e-7) .MODEL RdrainMOD RES (TC1=5.5e-3 TC2=1.2e-5) .MODEL RSLCMOD RES (TC1=1e-4 TC2=1e-6) .MODEL RsourceMOD RES (TC1=1e-3 TC2=3e-6) .MODEL RvthresMOD RES (TC1=-1.5e-3 TC2=-6e-6) .MODEL RvtempMOD RES (TC1=-1.8e-3 TC2=2e-7) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3.5) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.5 VOFF=-4) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-1.0) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.0 VOFF=-1.5) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
(c)2007 Fairchild Semiconductor Corporation FDS8880 Rev. B 9 www.fairchildsemi.com
CA LGATE GATE 1 RLGATE CIN ESG + EVTEMP RGATE + 18 22 9 20 10 RSLC1 51 ESLC 50 RLDRAIN DBREAK 11 + 17 EBREAK 18 MWEAK MMED MSTRO LSOURCE 8 RSOURCE 12 S1A 13 8 S1B 13 + EGS 6 8 EDS S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT VBAT + 22 15 17 RBREAK 18 RVTEMP 19 7 RLSOURCE SOURCE 3
rev August 2004
DPLCAP
LDRAIN 5 DRAIN 2
RSLC2
5 51
6 8 EVTHRES + 19 8 6
+ -
RDRAIN 21 16
DBODY
FDS8880 N-Channel PowerTrench(R) MOSFET
SABER Electrical Model
REV August 2004 template FDS8880 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=2.6e-12,ikf=10,nl=1.01,rs=5.6e-3,trs1=8e-4,trs2=2e-7,cjo=5e-10,m=0.55,tt=1e-11,xti=2) dp..model dbreakmod = (rs=0.2,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=4.27e-10,isl=10e-30,nl=10,m=0.38) m..model mmedmod = (type=_n,vto=1.8,kp=5,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.21,kp=150,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.53,kp=0.05,is=1e-30, tox=1,rs=0.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3.5) LDRAIN DPLCAP 5 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-4) sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.5,voff=-1.0) 10 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-1.0,voff=-1.5) RLDRAIN RSLC1 c.ca n12 n8 = 9.3e-10 51 c.cb n15 n14 = 9.3e-10 RSLC2 c.cin n6 n8 = 1.15e-9 ISCL dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 33.5 spe.eds n14 n8 n5 n8 = 1 GATE 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 i.it n8 n17 = 1 l.lgate n1 n9 = 3.6e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 1.2e-10 res.rlgate n1 n9 = 36 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 1.2
CA 12 S1A 13 8 S1B 13 + EGS 6 8 EDS S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT VBAT + 22 15 17 LGATE ESG + EVTEMP RGATE + 18 22 9 20 6 MSTRO CIN 8 6 8 EVTHRES + 19 8 50 RDRAIN 21 16 MWEAK MMED EBREAK + 17 18 DBREAK 11
DRAIN 2
DBODY
RLGATE
LSOURCE 7 RLSOURCE 18 RVTEMP 19
SOURCE 3
RSOURCE RBREAK
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-8e-7 res.rdrain n50 n16 = 2.9e-3, tc1=5.5e-3,tc2=1.2e-5 res.rgate n9 n20 = 2.5 res.rslc1 n5 n51 = 1e-6, tc1=1e-4,tc2=1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 5.4e-3, tc1=1e-3,tc2=3e-6 res.rvthres n22 n8 = 1, tc1=-1.5e-3,tc2=-6e-6 res.rvtemp n18 n19 = 1, tc1=-1.8e-3,tc2=2e-7 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/170))** 5)) } }
(c)2007 Fairchild Semiconductor Corporation FDS8880 Rev. B
10
www.fairchildsemi.com
FDS8880 N-Channel PowerTrench(R) MOSFET
SPICE Thermal Model
REV August 2004 FDS8880 Copper Area =1.0 in2 CTHERM1 TH 8 2.0e-3 CTHERM2 8 7 5.0e-3 CTHERM3 7 6 1.0e-2 CTHERM4 6 5 4.0e-2 CTHERM5 5 4 9.0e-2 CTHERM6 4 3 2e-1 CTHERM7 3 2 1 CTHERM8 2 TL 3 RTHERM1 TH 8 1e-1 RTHERM2 8 7 5e-1 RTHERM3 7 6 1 RTHERM4 6 5 5 RTHERM5 5 4 8 RTHERM6 4 3 12 RTHERM7 3 2 18 RTHERM8 2 TL 25
th
JUNCTION
RTHERM1
CTHERM1
8
RTHERM2
CTHERM2
7
RTHERM3
CTHERM3
6
SABER Thermal Model
Copper Area = 1.0 in template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 =2.0e-3 ctherm.ctherm2 8 7 =5.0e-3 ctherm.ctherm3 7 6 =1.0e-2 ctherm.ctherm4 6 5 =4.0e-2 ctherm.ctherm5 5 4 =9.0e-2 ctherm.ctherm6 4 3 =2e-1 ctherm.ctherm7 3 2 1 ctherm.ctherm8 2 tl 3 rtherm.rtherm1 th 8 =1e-1 rtherm.rtherm2 8 7 =5e-1 rtherm.rtherm3 7 6 =1 rtherm.rtherm4 6 5 =5 rtherm.rtherm5 5 4 =8 rtherm.rtherm6 4 3 =12 rtherm.rtherm7 3 2 =18 rtherm.rtherm8 2 tl =25 }
2
RTHERM4 5
CTHERM4
RTHERM5
CTHERM5
4
RTHERM6
CTHERM6
3
RTHERM7
CTHERM7
2
RTHERM8
CTHERM8
tl
CASE
TABLE 1. THERMAL MODELS COMPONANT CTHERM6 CTHERM7 CTHERM8 RTHERM6 RTHERM7 RTHERM8 0.04 in2 1.2e-1 0.5 1.3 26 39 55 0.28 in2 1.5e-1 1.0 2.8 20 24 38.7 0.52 in2 2.0e-1 1.0 3.0 15 21 31.3 0.76 in2 2.0e-1 1.0 3.0 13 19 29.7 1.0 in2 2.0e-1 1.0 3.0 12 18 25
(c)2007 Fairchild Semiconductor Corporation FDS8880 Rev. B
11
www.fairchildsemi.com
FDS8880 N-Channel PowerTrench(R) MOSFET
tm
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx(R) Across the board. Around the worldTM ActiveArrayTM BottomlessTM Build it NowTM CoolFETTM CROSSVOLTTM CTLTM Current Transfer LogicTM DOMETM E2CMOSTM EcoSPARK(R) EnSignaTM FACT Quiet SeriesTM FACT(R) FAST(R) FASTrTM FPSTM FRFET(R) GlobalOptoisolatorTM GTOTM HiSeCTM i-LoTM ImpliedDisconnectTM IntelliMAXTM ISOPLANARTM MICROCOUPLERTM MicroPakTM MICROWIRETM Motion-SPMTM MSXTM MSXProTM OCXTM OCXProTM OPTOLOGIC(R) OPTOPLANAR(R) PACMANTM PDP-SPMTM POPTM Power220(R) Power247(R) PowerEdgeTM PowerSaverTM Power-SPMTM PowerTrench(R) Programmable Active DroopTM QFET(R) QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM ScalarPumpTM SMART STARTTM SPM(R) STEALTHTM SuperFETTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TCMTM The Power Franchise(R) TM
tm
TinyBoostTM TinyBuckTM TinyLogic(R) TINYOPTOTM TinyPowerTM TinyWireTM TruTranslationTM SerDesTM UHC(R) UniFETTM VCXTM WireTM
DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
PRODUCT STATUS DEFINITIONS Definition of Terms
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
Datasheet Identification Advance Information
Product Status Formative or In Design First Production
Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor.The datasheet is printed for reference information only.
Preliminary
No Identification Needed
Full Production
Obsolete
Not In Production
Rev. I26
(c)2007 Fairchild Semiconductor Corporation FDS8880 Rev. B 12 www.fairchildsemi.com


▲Up To Search▲   

 
Price & Availability of FDS888007

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X